Aufgabenkatalog Algebra - Sommersemester 2019

Aufgaben zum Thema Vektorraum-Homomorphismen

DR. ANTON MALEVICH, LEONARD BECHTEL, JULIAN MAAS

Aufgabe 1 (1)

Was versteht man unter einem Vektorraum-Homomorphismus und welche Typen gibt es? Wiederholen Sie erneut die beiden Axiome, welche einen Vektorraum-Homomorphismus charakterisieren und zeichnen Sie ein Diagramm, in welchem die folgenden Vektorraum-Homomorphismus-Typen in Beziehung zueinander gesetzt werden: Homomorphismus, Monomorphismus, Epimorphismus, Isomorphismus, Endomorphismus, Automorphismus.

Aufgabe 2 (2)

Zeigen Sie von den folgenden Abbildungen, dass es sich um Vektorraum-Homomorphismen handelt:

a)
$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
 mit $(x, y) \mapsto (2x + y, 3y)$

b)
$$A: \mathbb{Q}^2 \to \mathbb{Q}$$
 mit $(x,y) \mapsto 2(x+y)$

c)
$$A: \mathbb{C} \to \mathbb{C} \text{ mit } z \mapsto \bar{z}$$

d)
$$A: \mathbb{R}^4 \to \mathbb{R}^4$$
 mit $(x_1, x_2, x_3, x_4) \mapsto (x_1, 0, x_3, 0)$

e)
$$A: Abb(\mathbb{R}, \mathbb{R}) \to \mathbb{R} \text{ mit } f \mapsto f(1)$$

f)
$$A : Abb(\mathbb{R}, \mathbb{R}) \to Abb(\mathbb{R}, \mathbb{R})$$
 mit $f \mapsto d \cdot f, d \in \mathbb{R}$

Aufgabe 3 (2)

Handelt es sich bei den folgenden Abbildungen um Vektorraum-Homomorphismen? Beweisen oder widerlegen Sie.

a)
$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
 mit $(x, y) \mapsto (2x, y + 3)$

b)
$$A: \mathbb{O}^3 \to \mathbb{O}^2$$
 mit $(x, y, z) \mapsto (x \cdot y, z)$

c)
$$A: \mathbb{R}^2 \to \mathbb{R}$$
 mit $(x, y) \mapsto x^2 + y$

d)
$$A: \mathbb{K}^2 \to \mathbb{K}^2$$
 mit $(x,y) \mapsto (a \cdot x + b \cdot y, c \cdot x + d \cdot y)$, \mathbb{K} ein Körper und $a,b,c,d \in \mathbb{K}$

Aufgabe 4 (2)

Wir wissen bereits aus Abschnitt 1.4, dass der \mathbb{R} -Vektorraum $V := \{f : \mathbb{N} \to \mathbb{R}\}$ ein Spezialfall des Vektorraumes Abb (Ω, \mathbb{K}) ist. Wir können die Elemente aus V auch als unendlich lange Tupel schreiben, was folgende Notation rechtfertigt: $V = \mathbb{R}^{\mathbb{N}} := \{(x_1, x_2, \dots) : x_k \in \mathbb{R}, \ \forall k \in \mathbb{N}\}$. Entscheiden Sie, ob es sich bei den folgenden Abbildungen um Vektorraum-Homomorphismen handelt:

a)
$$A: \mathbb{R}^2 \to \mathbb{R}^{\mathbb{N}}$$
 mit $(x, y) \mapsto (2x + y, 0, 2x + y, 0, ...)$

b)
$$A: \mathbb{R} \to \mathbb{R}^{\mathbb{N}}$$
 mit $x \mapsto (x, x^2, x^3, ...)$

c)
$$A: \mathbb{R}^2 \to \mathbb{R}^{\mathbb{N}} \text{ mit } (x,y) \mapsto (2(x-y), 4(x-y), 8(x-y), ...)$$

d)
$$A: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}} \text{ mit } (x_1, x_2, ...) \mapsto (x_2, x_3, ...)$$

e)
$$A: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}} \text{ mit } (x_1, x_2, ...) \mapsto (x_1, 0, x_2, 0, ...)$$

f)
$$A: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$$
 mit $(x_1, x_2, ...) \mapsto (x_1 \cdot x_2, x_3 \cdot x_4, ...)$

Aufgabe 5 (2)

Sei V ein \mathbb{K} -Vektorraum. Bei einer Projektion handelt es sich um einen Endomorphismus $\pi:V\to V$ mit der Eigenschaft $\pi\circ\pi=\pi$. Überprüfen Sie bei den folgenden Abbildungen, ob es sich um Projektionen handelt:

a)
$$\pi: \mathbb{R}^2 \to \mathbb{R}^2 \text{ mit } (x, y) \mapsto (y, x)$$

a)
$$\pi: \mathbb{R}^2 \to \mathbb{R}^2 \text{ mit } (x,y) \mapsto (y,x)$$
 d) $\pi: \mathbb{R}^2 \to \mathbb{R}^2 \text{ mit } (x,y) \mapsto (0,3y)$

b)
$$\pi: \mathbb{R}^3 \to \mathbb{R}^3$$
 mit $(x, y, z) \mapsto (x, 0, z)$ e) $\pi: \mathbb{R}^3 \to \mathbb{R}^3$ mit $(x, y) \mapsto (0, y, x)$

e)
$$\pi: \mathbb{R}^3 \to \mathbb{R}^3$$
 mit $(x, y) \mapsto (0, y, x)$

c)
$$\pi: \mathbb{R}^3 \to \mathbb{R}^2 \text{ mit } (x, y, z) \mapsto (x + y, z)$$
 f) $\pi: \mathbb{R}^3 \to \mathbb{R}^3 \text{ mit } (x, y, z) \mapsto (x, y, z)$

f)
$$\pi: \mathbb{R}^3 \to \mathbb{R}^3$$
 mit $(x, y, z) \mapsto (x, y, z)$

Aufgabe 6 (3)

Sei V ein \mathbb{K} -Vektorraum und $\pi \in \operatorname{End}_{\mathbb{K}} V$ eine Projektion. Beweisen Sie, dass sich V wie folgt zerlegen lässt:

$$V = \operatorname{Kern} \pi \oplus \operatorname{Bild} \pi$$

Tipp: Für alle $v \in V$ gilt $v = (v - \pi(v)) + \pi(v)$.

Aufgabe 7 (2)

Benutzen Sie Aufgabe 6, um die Vektorräume aus Aufgabe 5 entsprechend der daruf definierten Projektionen zu zerlegen.

Aufgabe 8 (4)

Seien V und W zwei beliebige K-Vektorräume. Mit $\operatorname{Hom}_{\mathbb{K}}(V,W)$ bezeichnen wir die Menge aller linearen Abbildungen $A:V\to W$. Zeigen Sie, dass $\operatorname{Hom}_{\mathbb K}(V,W)$ ein $\mathbb K$ -Vektorraum ist. Was gilt für die Dimension von $\operatorname{Hom}_{\mathbb{K}}(V,W)$, wenn $\dim_{\mathbb{K}}V=n\in\mathbb{N}$ und $\dim_{\mathbb{K}}W=$ $m \in \mathbb{N}$ gilt?